Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.912
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581531

RESUMO

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Assuntos
Alga Marinha , Alga Marinha/química , Regiões Antárticas , Peso Molecular , Ecossistema , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Verduras , Compostos de Sulfidrila/metabolismo
2.
Redox Biol ; 71: 103094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479221

RESUMO

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Antioxidantes/metabolismo , Transferases/metabolismo , Oxirredução , Glutationa/metabolismo , Oxirredutases/metabolismo , Dissulfetos/química
3.
J Obstet Gynaecol Res ; 50(4): 611-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325805

RESUMO

AIM: We aim to compare the maternal serum thiol and ischemia-modified albumin (IMA) levels between pregnant women with placenta previa and those with uncomplicated pregnancies and to determine whether changes in these levels were useful in predicting cases of abnormally invasive placenta (AIP). METHODS: Fifty-five pregnant women diagnosed with placenta previa according to the diagnostic criteria (case group) were compared to 100 women with uncomplicated pregnancies of similar demographic characteristics (control group). The patients with placenta previa were further divided into two subgroups: AIP (n = 20) and placenta previa without invasion (n = 35). The maternal serum native thiol, total thiol, disulfide, and IMA levels of the groups were evaluated. RESULTS: The native thiol, total thiol, and IMA values were significantly lower in the case group than in the control group (p < 0.001). The disulfide values were similar between the study and control groups (p = 0.488). When the AIP and placenta previa without invasion groups were compared, the levels of native thiol, total thiol, disulfide, and IMA were similar (p > 0.05). CONCLUSIONS: Maternal serum thiol and IMA levels were lower in placenta previa cases compared to the control group. However, these parameters were not useful in predicting AIP cases.


Assuntos
Placenta Prévia , Albumina Sérica Humana , Compostos de Sulfidrila , Feminino , Humanos , Gravidez , Biomarcadores , Estudos de Casos e Controles , Dissulfetos/sangue , Dissulfetos/química , Estresse Oxidativo , Placenta Prévia/diagnóstico , Albumina Sérica , Albumina Sérica Humana/metabolismo , Compostos de Sulfidrila/sangue , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
4.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383455

RESUMO

Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.


Assuntos
Proteostase , Compostos de Sulfidrila , Camundongos , Animais , Compostos de Sulfidrila/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Envelhecimento , Proteoma/metabolismo
5.
J Am Chem Soc ; 146(6): 3974-3983, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299512

RESUMO

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Assuntos
Produtos Biológicos , Galactosamina , Galactosamina/química , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Produtos Biológicos/metabolismo
6.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281735

RESUMO

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Assuntos
Curcumina , Curcumina/análogos & derivados , Doença Enxerto-Hospedeiro , Animais , Camundongos , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Linfócitos T , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia
7.
Yakugaku Zasshi ; 144(1): 47-50, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171794

RESUMO

Environmental electrophiles modify thiol groups of proteins in organs, disrupting cellular functions carried out by the modified proteins and increasing the risk of various diseases. The transcription factor NF-E2-related factor 2 (Nrf2) plays a crucial role in detoxifying electrophiles by forming glutathione adducts and subsequently excreting them into extracellular spaces. Supersulfides such as cysteine persulfides (CysSSH) produced by cystathionine γ-lyase (CSE) capture environmental electrophiles through sulfur adduct formation. However, the Nrf2 and CSE contributions to blocking environmental electrophile-mediated toxicity have yet to be evaluated. Therefore, we assessed the individual and combined roles of Nrf2 and CSE in suppressing toxicity induced by environmental electrophiles using Nrf2 knockout (KO), CSE KO, and Nrf2/CSE double KO (DKO) mice. Our findings indicate that CSE/Nrf2 DKO mice are more sensitive to environmental electrophiles compared to their single KO counterparts, highlighting the distinct mechanisms through which both pathways mitigate the toxic effects of reactive electrophiles. Moreover, diverse metabolites produced by symbiotic gut bacteria in the human body are known to exert various effects on host organ functions beyond the intestinal tract. We observed reduced blood supersulfide levels in mice lacking gut microflora compared to normal mice. Furthermore, we identified intestinal bacteria belonging to the families Ruminococcaceae and Lachnospiraceae as high CysSSH-producing bacteria. This suggests that the gut microbiota serves as a source of in vivo supersulfide molecules. These findings suggest that supersulfide derived from gut bacteria may act protectively against environmental electrophilic exposure in the host.


Assuntos
Cistationina gama-Liase , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/farmacologia , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo , Estresse Oxidativo
8.
Appl Environ Microbiol ; 90(2): e0195923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193681

RESUMO

Propanethiol (PT) is a hazardous pollutant that poses risks to both the environment and human well-being. Pseudomonas putida S-1 has been identified as a microorganism capable of utilizing PT as its sole carbon source. However, the metabolic pathway responsible for PT degradation in P. putida S-1 has remained poorly understood, impeding its optimization and practical application. In this study, we investigated the catabolic network involved in PT desulfurization with P. putida S-1 and identified key gene modules crucial to this process. Notably, propanethiol oxidoreductase (PTO) catalyzes the initial degradation of PT, a pivotal step for P. putida S-1's survival on PT. PTO facilitates the oxidation of PT, resulting H2S, H2O2, and propionaldehyde (PA). Catalase-peroxidase catalyzes the conversion of H2O2 to oxygen and water, while PA undergoes gradual conversion to Succinyl-CoA, which is subsequently utilized in the tricarboxylic acid cycle. H2S is digested in a comprehensive desulfurization network where sulfide-quinone oxidoreductase (SQOR) predominantly converts it to sulfane sulfur. The transcriptome analysis suggests that sulfur can be finally converted to sulfite or sulfate and exported out of the cell. The PT degradation capacity of P. putida S-1 was enhanced by increasing the transcription level of PTO and SQOR genes in vivo.IMPORTANCEThis work investigated the PT catabolism pathway in Pseudomonas putida S-1, a microorganism capable of utilizing PT as the sole carbon source. Critical genes that control the initiation of PT degradation were identified and characterized, such as pto and sqor. By increasing the transcription level of pto and sqor genes in vivo, we have successfully enhanced the PT degradation efficiency and growth rate of P. putida S-1. This work does not only reveal a unique PT degradation pathway but also highlights the potential of enhancing the microbial desulfurization process in the bioremediation of thiol-contaminated environment.


Assuntos
Oxirredutases , Pseudomonas putida , Quinona Redutases , Humanos , Oxirredutases/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Peróxido de Hidrogênio/metabolismo , Compostos de Sulfidrila/metabolismo , Biodegradação Ambiental , Enxofre/metabolismo , Carbono/metabolismo
9.
Free Radic Biol Med ; 213: 371-393, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272324

RESUMO

Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.


Assuntos
Leishmania donovani , Humanos , Leishmania donovani/genética , Leishmania donovani/metabolismo , Compostos de Sulfidrila/metabolismo , Serina O-Acetiltransferase/metabolismo , Cisteína/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Oxirredução , Resistência a Medicamentos/genética
10.
mSystems ; 9(2): e0076423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289043

RESUMO

The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.


Assuntos
Halitose , Periodontite , Humanos , Fusobacterium nucleatum/genética , Halitose/microbiologia , Compostos de Sulfidrila/metabolismo , Bactérias , Streptococcus gordonii , Ornitina/metabolismo , Metionina/metabolismo , Poliaminas/metabolismo
11.
ACS Chem Biol ; 19(2): 325-335, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38230650

RESUMO

Protein-small molecule hybrids are structures that have the potential to combine the inhibitory properties of small molecules and the specificities of binding proteins. However, achieving such synergies is a substantial engineering challenge with fundamental principles yet to be elucidated. Recent work has demonstrated the power of the yeast display-based discovery of hybrids using a combination of fibronectin-binding domains and thiol-mediated conjugations to introduce small-molecule warheads. Here, we systematically study the effects of expanding the chemical diversity of these hybrids on the yeast surface by investigating a combinatorial set of fibronectins, noncanonical amino acid (ncAA) substitutions, and small-molecule pharmacophores. Our results show that previously discovered thiol-fibronectin hybrids are generally tolerant of a range of ncAA substitutions and retain binding functions to carbonic anhydrases following click chemistry-mediated assembly of hybrids with diverse linker structures. Most surprisingly, we identified several cases where replacement of a potent acetazolamide warhead with a substantially weaker benzenesulfonamide warhead still resulted in the assembly of multiple functional hybrids. In addition to these unexpected findings, we expanded the throughput of our system by validating a 96-well plate-based format to produce yeast-displayed hybrid conjugates in parallel. These efficient explorations of hybrid chemical diversity demonstrate that there are abundant opportunities to expand the functions of protein-small molecule hybrids and elucidate principles that dictate their efficient discovery and design.


Assuntos
Fibronectinas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fibronectinas/metabolismo , Proteínas de Transporte/metabolismo , Química Click , Compostos de Sulfidrila/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
13.
Food Chem Toxicol ; 185: 114446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244666

RESUMO

The aberrant increase or dysregulation of cytosolic Zn2+ concentration ([Zn2+]cyt) has been associated with cellular dysfunction and cytotoxicity. In this study, we postulated that Zn2+ mediates the cytotoxicity of thiol-reactive electrophiles. This notion was grounded on earlier research, which revealed that thiol-reactive electrophiles may disrupt Zn2+-binding motifs, consequently causing Zn2+ to be released from Zn2+-binding proteins, and leading to a surge in [Zn2+]cyt. The thiol-reactive electrophiles N-ethylmaleimide (NEM) and diamide were observed to induce an increase in [Zn2+]cyt, possibly through the impairment of Zn2+-binding motifs, and subsequent stimulation of reactive oxygen species (ROS) formation, resulting in cytotoxicity in primary cultured rat vascular smooth muscle cells. These processes were negated by the thiol donor N-acetyl-L-cysteine and the Zn2+ chelator TPEN. Similar outcomes were detected with co-treatment involving Zn2+ and Zn2+ ionophores such as pyrithione or disulfiram. Moreover, TPEN was found to inhibit cytotoxicity triggered by short-term exposure to various thiol-reactive electrophiles including hydrogen peroxide, acrylamide, acrylonitrile, diethyl maleate, iodoacetic acid, and iodoacetamide. In conclusion, our findings suggest that cytosolic Zn2+ acts as a universal mediator in the cytotoxic effects produced by thiol-reactive electrophiles.


Assuntos
Etilenodiaminas , Compostos de Sulfidrila , Zinco , Ratos , Animais , Compostos de Sulfidrila/metabolismo , Zinco/metabolismo , Músculo Liso Vascular/metabolismo , Citosol , Ácidos/metabolismo
14.
J Agric Food Chem ; 72(4): 1855-1863, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943233

RESUMO

The use of new disease-resistant grapevine varieties is a long-term but promising solution to reduce chemical inputs in viticulture. However, little is known about water deficit effects on these varieties, notably regarding berry composition. The aim of this study was to characterize the primary metabolites and thiol precursors levels of 6 fungi-resistant varieties and Syrah. Vines were grown under field conditions and under different water supply levels, and harvested at the phloem unloading arrest. A great variability among varieties regarding the levels of thiol precursors was observed, with the highest concentration, of 539 µg/kg, being observed in 3176-N, a hybrid displaying red fruits. Water deficit negatively and equally impacted the accumulation of sugars, organic acids, and thiol precursors per berry and per plant, with minor effects on their concentration. The observed losses of metabolites per cultivation area suggest that water deficits can lead to significant economic losses for the producer.


Assuntos
Vitis , Vitis/química , Secas , Compostos de Sulfidrila/metabolismo , Frutas/química , Fungos/metabolismo , Água/metabolismo
15.
Plant Physiol Biochem ; 206: 108219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048703

RESUMO

The Arabidopsis quiescin sulfhydryl oxidase 1 (QSOX1) thiol-based redox sensor has been identified as a negative regulator of plant immunity. Here, we have found that small molecular weight proteins of QSOX1 were converted to high molecular weight (HMW) complexes upon exposure to heat stress and that this was accompanied by a switch in QSOX1 function from a thiol-reductase to a molecular chaperone. Plant treatment with S-nitrosoglutathione (GSNO), which causes nitrosylation of cysteine residues (S-nitrosylation), but not with H2O2, induced HMW QSOX1 complexes. Thus, functional switching of QSOX1 is induced by GSNO treatment. Accordingly, simultaneous treatment of plants with heat shock and GSNO led to a significant increase in QSOX1 chaperone activity by increasing its oligomerization. Consequently, transgenic Arabidopsis overexpressing QSOX1 (QSOX1OE) showed strong resistance to heat shock, whereas qsox1 knockout plants exhibited high sensitivity to heat stress. Plant treatment with GSNO under heat stress conditions increased their resistance to heat shock. We conclude that S-nitrosylation allows the thiol-based redox sensor, QSOX1, to respond to various external stresses in multiple ways.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Resposta ao Choque Térmico , Peróxido de Hidrogênio/metabolismo , Chaperonas Moleculares/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Compostos de Sulfidrila/metabolismo
16.
Free Radic Biol Med ; 210: 333-343, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056573

RESUMO

Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.


Assuntos
Adenosina Trifosfatases , Compostos de Sulfidrila , Adenosina Trifosfatases/metabolismo , Fosforilação , Compostos de Sulfidrila/metabolismo , Cinética , Hidrólise , Mitocôndrias/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo
17.
Immunopharmacol Immunotoxicol ; 46(1): 20-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37584252

RESUMO

OBJECTIVE: To study the reeducation effect of copper thiol complexes on macrophage morphology and cytokine expression. METHODS: The effect of copper thiol complexes was assessed on murine macrophages by the cell morphology observed through optical microscopy, while the expression of cytokines by protein abundance after stimulation. A viability experiment was performed on PMBC to confirm that copper complexes do not affect other cells. RESULTS: The M1 shape was reported after treatment with copper thiol complexes at 1-200 µM, while M2 behavior was documented between 50 and 800 µM. Surprisingly, a thin elongate morphology was observed between 400-800 µM like the M2 shape. The expression of M1 cytokines was noted ranging from 1 to 100 µM, with the highest yield at 1 µM (2243 pg/µL) for the copper-penicillamine complex. M2 production behavior was observed at 1-800 µM, with the highest abundance close to 1150 pg/µL (200-400 µM) was quantified from the copper-cysteine complex. Finally, LCCu complexes did not induce a cytotoxic response on PBMC while exhibiting a high IL-4 and IL-10 production, similar to their gold analogs. CONCLUSIONS: The capacity of copper thiol complexes to reeducate M1 to M2 morphoexpression can be promising for cell protection by using copper thiol penicillamine or immuno-regeneration of tissues when using copper thiol cysteine.


Assuntos
Cobre , Citocinas , Camundongos , Animais , Citocinas/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Cisteína/metabolismo , Cisteína/farmacologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Penicilamina/farmacologia , Penicilamina/metabolismo
18.
J Agric Food Chem ; 72(4): 1878-1884, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37293927

RESUMO

Varietal thiols have an impact on the overall aroma of many white, rosé, and red wines and beers. They originate from the metabolism of non-odorant aroma precursors by yeast during the fermentation step, via an intrinsic enzyme, the carbon-sulfur ß-lyase (CSL, EC 4.4.1.13). However, this metabolism is directly dependent upon efficient internalization of aroma precursors and intracellular CSL activity. Consequently, the overall CSL activity converts on average only 1% of the total precursors available. To improve the conversion of thiol precursors during winemaking or brewing, we investigated the possibility of using an exogenous CSL enzyme from Lactobacillus delbrueckii subsp. bulgaricus produced in Escherichia coli. We first implemented a reliable spectrophotometric method to monitor its activity on different related aroma precursors and studied its activity in the presence of various competing analogues and at different pH values. This study allowed us to highlight the parameters to define CSL activity and structural insights for the recognition of the substrate, which pave the way for the use of exogenous CSL for the release of aromas in beer and wine.


Assuntos
Liases , Vinho , Vinho/análise , Cerveja , Odorantes/análise , Liases/metabolismo , Compostos de Sulfidrila/metabolismo , Saccharomyces cerevisiae/metabolismo , Liases de Carbono-Enxofre/metabolismo , Fermentação
19.
Bioconjug Chem ; 35(1): 43-50, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38150592

RESUMO

Strategies for covalent modification of RNA are important for enabling biological studies of the biopolymer and for enhancing properties of therapeutic RNAs. While a number of electrophiles have been observed to react with RNA, few methods exist for reaction with nucleophiles. Here, we describe new reagents that enable efficient conjugation of amines and other nucleophiles to unmodified RNA postsynthetically via transient activation of 2'-OH groups. Reaction of single-stranded RNA in aqueous solution with phenolic imidazolecarbamates at room temperature results in stoichiometric and superstoichiometric yields of imidazolecarbonyl group adducts, and control experiments with DNA confirm the site of reaction in RNA as 2'-OH. Subsequent incubation of imidazolecarbonyl-activated RNAs with primary or selected secondary amines results in rapid, high-yield conversion to carbamate conjugates. The activation and subsequent nucleophile reaction can be carried out either stepwise or in a one-pot reaction. Thiols and phenol species react to yield (thio)carbonate adducts, and amino acid sidechains also react, suggesting possible future utility for protein conjugates and analysis of protein-RNA interactions. The activation method is found to be selective to unpaired regions of RNA, and can be directed to a specific location in a strand by use of a loop-inducing helper DNA. The results establish novel and efficient reagents and methods for modifying RNA postsynthetically with nucleophiles.


Assuntos
Aminas , Compostos de Sulfidrila , Aminas/química , Compostos de Sulfidrila/metabolismo , RNA , Aminoácidos , DNA
20.
Mol Biol (Mosk) ; 57(6): 995-1005, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062955

RESUMO

Low molecular-weight thiols as glutathione and cysteine are an important part of the cell's redox regulation system. Previously, we have shown that inactivation of ADP-heptose synthesis in Escherichia coli with a gmhA deletion induces the oxidative stress. It is accompanied by rearrangement of thiol homeostasis and increased sensitivity to antibiotics. In our study, we found that restriction of cysteine metabolism (ΔcysB and ΔcysE) and inhibition of glutathione synthesis (ΔgshAB) lead to a decrease in the sensitivity of the ΔgmhA mutant to antibiotics but not to its expected increase. At the same time, blocking of the export of cysteine (ΔeamA) or increasing import (Ptet-tcyP) into cells of the oxidized form of cysteine-cystine leads to an even greater increase in the sensitivity of gmhA-deleted cells to antibiotics. In addition, there is no correlation between the cytotoxic effect of antibiotics and the level of reactive oxygen species (ROS), the total pool of thiols, or the viability of the initial cell population. However, a correlation between the sensitivity to antibiotics and the level of oxidized glutathione in cells was found in our study. Apparently, a decrease in the content of low-molecular-weight thiols saves NADPH equivalents and limits the processes of protein redox modification. This leads to increasing of resistance of the ΔgmhA strain to antibiotics. An increase in low-molecular-weight thiols levels requires a greater expenditure of cell resources, leads to an increase in oxidized glutathione and induces to greater increase in sensitivity of the ΔgmhA strain to antibiotics.


Assuntos
Cisteína , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Cisteína/genética , Cisteína/metabolismo , Dissulfeto de Glutationa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Glutationa/química , Glutationa/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...